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TRANSIENT ANTIPLANE VIBRATIONS OF A RECTANGULAR ELASTIC SLAB* 

N.V. BOYEV and M.A. SUMBATYAN 

The non-stationary antiplane problem of an elastic rectangle under specified 

stresses on its lateral edge is considered. A solution of the problem in 

Laplace transformshasbeen obtained in the form of a series of homogeneous 
solutions. The use of certain special operator relationships enables one 
to write out the original of the solution in an explicit form. When this 

is done for any instant of time, each homogeneous solution is expressed 

in the form of a finite sum. A numerical analysis of the problem is 

presented and the characteristic features of the behaviour of the stressed 

state in time are established. 

Let us consider the transient vibrations of an elastic slab of infinite length (the y- 

axis) and rectangular cross-section with sides of 2h and 2n.z~ I-h, hl. z~[--(l,al under conditions 

of antiplane deformation caused by forces acting on opposite lateral edges 5 = *i, z E l-h, h] 

ZEv (E353 T) I+*, = f (5. F T); E = da, 5 = z h; 5, 5 E [--I, I] (1) 

Here f(5, T) is an arbitrary function of the variables 5 and the time 'I'. For simplicity, 

let us assume that the edges 5=+1 are free from stresses (T~~J~=~~=O) and the initial 

conditions are: 
~lr~= aviaTiT=o = 0, i < 5, : < i. 

.(o = v (5, 5, T) is the displacement along the y-axis). 

Let us apply a Laplace transform with respect to time to the initial boundary value 

problem. We have 

t = TIT,, E = h/o, p2 = pa*s*/(~T,*) 

Mere, p is the density of the material, p is the shear modulus and To is the character- 

istic time. Since, subject to condition (I), the function V is odd with respect to 5, we 

shall seek it in the form H'(5,1~)shyS, where the function w (5, P) is determined from the 

following selfadjoint boundary value problem 

(2) 

In the case of a problem which is symmetric with respect to c,the eigenfunctions of problem 
(2) have the form 

*Prikl.Matem.Mekhan.,52,4,697-699,1988 
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~(5,P)‘B(p)cos~1/Y’-pP?i (3) 

where B(P) is an unknown function of the parameter p and the eigenvalues are determined 
from the equation 

I/v* - p* sin E f/v* -- p2 = 0, l’$ = nZk2/$ + p2, k = 0, +I, f2, 

Fig.1 Fig.2 Fig.3 

Hence, the solution of the initial boundary value problem is represented by a series of 

the homogeneous solutions 

I’ CL L P) = 5 B, (P) W, (5; Y, P) sh yE 
k==aI 

where the functiOnS wk(i;y.P) have the form (3) (when y= Yk) 
condition. 

and satisfy the orthogonality 

Let us determine the functions Bk(p) which satisfy the boundary conditions on the edges 

E = *I using the 

For example, 

Laplace transform 

orthogonality condition. 

in the case of a function f (6,t) which is even with respect to t,, the 
has the form 

Here F (6, P) 
variable t. 

60 = Vl. 6, = 1 (m # 0) 

is the Laplace transform of the function f (5, f) with respect to the 

Formula (4) is treated using the representation 

F (5. P) f?-br = m 
1 +c-* x 

(- !)” F (5, p) e~(~~“)~, r = ti2T 

*=rO 

of the Laplace transform formula /l/ 

,-bp__.-br, 
0, O<t<b 

(b>O) ’ abJ1 (q/)/y, t > b, y =Jtt- 63 

and the convolution theorem. 
Let us now give the expressions for the stresses 

(4) 

(5) 
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In the case of series (5) which has been obtained, it is characteristic that each 
homogeneous solution is represented in the form of a sum for any instant of time t. 

We now present the results of numerical calculations in the case when 

e = 1, f(&t) = 'p (0 g (0, e (6) = r, g (0 = R (f) - R (t - 0.2) 

where H(t) is the Heaviside function. The time ale is adopted for To where c=vrp is 
the velocity of propagation of shear waves. 

The stress distribution TV,, in time at the point &= f=08 (Fig.1) reflects the 
transient nature of the change in the stressed state. In the interval t E 10.2. 0.41, the 
behaviour of the stresses rEv at this point is only slightly different from the behaviour of 
the function g (0. However, during the interval when the perturbations are reflected from 
the boundaries E=fi, the stresses change rapidly both in magnitude and in sign. During 
the intervals of time after the passage of the rear front of the wave as time increases, the 
oscillation of the stresses increases and changes sign. 

The distribution of the stresses with respect to 5 at the instant of time t= 2.5 when 
f= 0.0.5,1 (curves 1, 2 and 3) is shown in Fig.2. When c=O, if the "jumps" in the stresses 
when &=O.S and E=0.7 are insignificant in magnitude, then, as 5 increases, they become 
larger and are accompanied by a change in sign. 

When t = 2.5, curves 1-3 in Fig.3 reflect the stress distribution with respect to 6 when 
e = 0.2 (curve 1 (~OT~J,~ = 0.5 (curve 2, (iOrEv), and f = 0.8 (curve 3). 
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AN APPROACH TO SOLVING THE PROBLEM OF A CRACK 
IN A WEDGE-SHAPED PART OF A PLANE* 

V.A. SITNIK 

In a development of previous obtained results of 
crack which emerges orthogonally onto the boundary of 

the solution of a problem concerning a 
a half-plane /l/, the problem of a crack 

of finite length on the axis of symmetry of one of the wedge-shaped parts of a plane is con- 
sidered. The indices of the singularities of the solution are determined at both vertices of 
the crack and expressions are presented for the coefficients accompanying these singularities. 
Numerical values of the coefficients of the stress intensity are obtained in the case when 
the parts are opened at a right angle and there is a constant load on the edge of the crack. 
These results are in agreement with data cited in the literature for a piecewise homogeneous 
plane with a slit which emerges orthogonally onto the line where the half-planes join /2/. 

Fig.1 

Previously /3/, a solution of the functional Wiener-Hopf equation 
was presented in closed form for an analogous problem and an 
expression was given for the coefficient accompanying the fractional 
power singularity of the solution, that is, at the right end of the 
slit. Most attention will therefore be paid to isolating the 
singularities of the two vertices of the crack and to determining 
the coefficients accompanying these singularities. 

1. Formulation of the problem. 
Riemann problem. 

Reduction to the 

A crack of finite length is considered which emerges along the 
axis of symmetry of one of the wedge-shaped parts of a piecewise 
homogeneous plane onto the line where the materials are joined (Fig. 
1). A selfbalanced load ae(r,O)= --f(r) is applied to the edges of 
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